Welcome to my blog

Wednesday 29 November 2017

5 FIBONACCI HEAP IMPLEMENTATION





5. FIBONACCI HEAP IMPLEMENTATION

AIM:
      To write a java program for Fibonacci heap implement.

ALGORITHM:
1.      Call the buildMinHeap() function on the list. 
2.      insert(x) inserts a node x into the heap. 
3.      minimum() returns the node in the heap with minimum key. 
4.      extractMin() deletes the node with minimum key from the heap. 
5.      union(H) merge heap H and create a new one. 
6.      decreaseKey(x,k) assigns to node x within the heap the new key value k, which is assumed to be no greater than its current key value. 
7.      delete(x) deletes node x from the heap.  

 
PROGRAM :
importjava.util.*;
classFibonacciHeapNode
{
FibonacciHeapNode child, left, right, parent;
int element;
publicFibonacciHeapNode(int element)
{
this.right = this;
this.left = this;
this.element = element;
}
}
classFibonacciHeap
{
privateFibonacciHeapNode root;
privateint count;
publicFibonacciHeap()
{
root = null;
count = 0;
}
publicbooleanisEmpty()
{
return root == null;
}
public void clear()
{
root = null;
count = 0;
}
public void insert(int element)
{
FibonacciHeapNode node = new FibonacciHeapNode(element);
node.element = element;

if (root != null)
{
node.left = root;
node.right = root.right;
root.right = node;
node.right.left = node;
if (element <root.element)
root = node;
}
else
root = node;
count++;
}
public void display()
{
System.out.print("\nHeap = ");
FibonacciHeapNodeptr = root;
if (ptr == null)
{
System.out.print("Empty\n");
return;
}
do
{
System.out.print(ptr.element +" ");
ptr = ptr.right;
} while (ptr != root &&ptr.right != null);
System.out.println();
}
}
public class FibonacciHeapTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("FibonacciHeap Test\n\n");
FibonacciHeapfh = new FibonacciHeap();
charch;
do
{
System.out.println("\nFibonacciHeap Operations\n");
System.out.println("1. insert element ");
System.out.println("2. check empty");
System.out.println("3. clear");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter element");
fh.insert(scan.nextInt() );
break;
case 2 :
System.out.println("Empty status = "+ fh.isEmpty());
break;
case 3 :
fh.clear();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
fh.display();
System.out.println("\nDo you want to continue (Type y or n)\n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}

4 HEAP IMPLEMENTATION





4. HEAP IMPLEMENTATION

AIM:
     To write a java program for heap implement


ALGORITHM:
  1. Call the buildMaxHeap() function on the list. Also referred to as heapify(), this builds a heap from a list in O(n) operations.
  2. Swap the first element of the list with the final element. Decrease the considered range of the list by one.
  3. Call the siftDown() function on the list to sift the new first element to its appropriate index in the heap.
  4. Go to step (2) unless the considered range of the list is one element.
  5. The buildMaxHeap() operation is run once, and is O(n) in performance. The siftDown() function is O(log n), and is called n times. Therefore, the performance of this algorithm is O(n + n log n) = O(n log n).

PROGRAM :
import java.util.Scanner;
class Heap
{
private int[] heapArray;
private int maxSize;
private int heapSize;
public Heap(int mx)
{
maxSize = mx;
heapSize = 0;
heapArray = new int[maxSize];
}
public boolean isEmpty()
{
return heapSize == 0;
}
public boolean insert(int ele)
{
if (heapSize + 1 == maxSize)
return false;
heapArray[++heapSize] = ele;
int pos = heapSize;
while (pos != 1 && ele > heapArray[pos/2])
{
heapArray[pos] = heapArray[pos/2];
pos /=2;
}
heapArray[pos] = ele;
return true;
}
public int remove()
{
int parent, child;
int item, temp;
if (isEmpty() )
throw new RuntimeException("Error : Heap empty!");
item = heapArray[1];
temp = heapArray[heapSize--];
parent = 1;
child = 2;
while (child <= heapSize)
{
if (child < heapSize && heapArray[child] < heapArray[child + 1])
child++;
if (temp >= heapArray[child])
break;
heapArray[parent] = heapArray[child];
parent = child;
child *= 2;
}
heapArray[parent] = temp;
return item;
}
public void displayHeap()
{
System.out.print("\nHeap array: ");
for(int i = 1; i <= heapSize; i++)
System.out.print(heapArray[i] +" ");
System.out.println("\n");
}
}
public class HeapTest
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
System.out.println("Heap Test\n\n");
System.out.println("Enter size of heap");
Heap h = new Heap(scan.nextInt() )
char ch;
do
{
System.out.println("\nHeap Operations\n");
System.out.println("1. insert ");
System.out.println("2. delete item with max key ");
System.out.println("3. check empty");
boolean chk;
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
chk = h.insert( scan.nextInt() );
if (chk)
System.out.println("Insertion successful\n");
else
System.out.println("Insertion failed\n");
break;
case 2 :
System.out.println("Enter integer element to delete");
if (!h.isEmpty())
h.remove();
else
System.out.println("Error. Heap is empty\n");
break;
case 3 :
System.out.println("Empty status = "+ h.isEmpty());
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
h.displayHeap();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}


3 RED-BLACK TREE IMPLEMENTATION



3 RED-BLACK TREE IMPLEMENTATION



AIM:
To write a java program to implement Red-Black Tree.
ALGORITHM:
1. Check whether tree is Empty.
2. If tree is Empty then insert the newNode as Root node with color Black and exit from the operation.
3. If tree is not Empty then insert the newNode as a leaf node with Red color.
4. If the parent of newNode is Black then exit from the operation.
5. If the parent of newNode is Red then check the color of parent node's sibling of newNode.
6. If it is Black or NULL node then make a suitable Rotation and Recolor it.
7. If it is Red colored node then perform Recolor and Recheck it. Repeat the same until tree becomes Red Black Tree.



PROGRAM:
import java.util.Scanner;
class RedBlackNode
{
RedBlackNode left, right;
int element;
int color;
public RedBlackNode(int theElement)
{
this( theElement, null, null );
}
public RedBlackNode(int theElement, RedBlackNode lt, RedBlackNode rt)
{
left = lt;
right = rt;
element = theElement;
color = 1;
}
}
class RBTree
{
private RedBlackNode current;
private RedBlackNode parent;
private RedBlackNode grand;
private RedBlackNode great;
private RedBlackNode header;
private static RedBlackNode nullNode;
static
{
nullNode = new RedBlackNode(0);
nullNode.left = nullNode;
nullNode.right = nullNode;
}
static final int BLACK = 1;
static final int RED   = 0;
public RBTree(int negInf)
{
header = new RedBlackNode(negInf);
header.left = nullNode;
header.right = nullNode;
}
public boolean isEmpty()
{
return header.right == nullNode;
}
public void makeEmpty()
{
header.right = nullNode;
}
public void insert(int item )
{
current = parent = grand = header;
nullNode.element = item;
while (current.element != item)
{
great = grand;
grand = parent;
parent = current;
current = item < current.element ? current.left : current.right;
if (current.left.color == RED && current.right.color == RED)
handleReorient( item );
}
if (current != nullNode)
return;
current = new RedBlackNode(item, nullNode, nullNode);
if (item < parent.element)
parent.left = current;
else
parent.right = current;
handleReorient( item );
}
private void handleReorient(int item)
{
current.color = RED;
current.left.color = BLACK;
current.right.color = BLACK;
if (parent.color == RED)
{
grand.color = RED;
if (item < grand.element != item < parent.element)
parent = rotate( item, grand );
current = rotate(item, great );
current.color = BLACK;
}
header.right.color = BLACK;
}
private RedBlackNode rotate(int item, RedBlackNode parent)
{
if(item < parent.element)
return parent.left = item < parent.left.element ? rotateWithLeftChild(parent.left) : rotateWithRightChild(parent.left) ;
else
return parent.right = item < parent.right.element ? rotateWithLeftChild(parent.right) : rotateWithRightChild(parent.right);
}
private RedBlackNode rotateWithLeftChild(RedBlackNode k2)
{
RedBlackNode k1 = k2.left;
k2.left = k1.right;
k1.right = k2;
return k1;
}
private RedBlackNode rotateWithRightChild(RedBlackNode k1)
{
RedBlackNode k2 = k1.right;
k1.right = k2.left;
k2.left = k1;
return k2;
}
public int countNodes()
{
return countNodes(header.right);
}
private int countNodes(RedBlackNode r)
{
if (r == nullNode)
return 0;
else
{
int l = 1;
l += countNodes(r.left);
l += countNodes(r.right);
return l;
}
}
public boolean search(int val)
{
return search(header.right, val);
}
private boolean search(RedBlackNode r, int val)
{
boolean found = false;
while ((r != nullNode) && !found)
{
int rval = r.element;
if (val < rval)
r = r.left;
else if (val > rval)
r = r.right;
else
{
found = true;
break;
}
found = search(r, val);
}
return found;
}
public void inorder()
{
inorder(header.right);
}
private void inorder(RedBlackNode r)
{
if (r != nullNode)
{
inorder(r.left);
char c = 'B';
if (r.color == 0)
c = 'R';
System.out.print(r.element +""+c+" ");
inorder(r.right);
}
}
public void preorder()
{
preorder(header.right);
}
private void preorder(RedBlackNode r)
{
if (r != nullNode)
{
char c = 'B';
if (r.color == 0)
c = 'R';
System.out.print(r.element +""+c+" ");
preorder(r.left);
preorder(r.right);
}
}
public void postorder()
{
postorder(header.right);
}
private void postorder(RedBlackNode r)
{
if (r != nullNode)
{
postorder(r.left);
postorder(r.right);
char c = 'B';
if (r.color == 0)
c = 'R';
System.out.print(r.element +""+c+" ");
}
}
}
public class RedBlackTree
{
public static void main(String[] args)
{
Scanner scan = new Scanner(System.in);
/* Creating object of RedBlack Tree */
RBTree rbt = new RBTree(Integer.MIN_VALUE);
System.out.println("Red Black Tree Test\n");
char ch;
do
{
System.out.println("\nRed Black Tree Operations\n");
System.out.println("1. insert ");
System.out.println("2. search");
System.out.println("3. count nodes");
System.out.println("4. check empty");
System.out.println("5. clear tree");
int choice = scan.nextInt();
switch (choice)
{
case 1 :
System.out.println("Enter integer element to insert");
rbt.insert( scan.nextInt() );
break;
case 2 :
System.out.println("Enter integer element to search");
System.out.println("Search result : "+ rbt.search( scan.nextInt() ));
break;
case 3 :
System.out.println("Nodes = "+ rbt.countNodes());
break;
case 4 :
System.out.println("Empty status = "+ rbt.isEmpty());
break;
case 5 :
System.out.println("\nTree Cleared");
rbt.makeEmpty();
break;
default :
System.out.println("Wrong Entry \n ");
break;
}
System.out.print("\nPost order : ");
rbt.postorder();
System.out.print("\nPre order : ");
rbt.preorder();
System.out.print("\nIn order : ");
rbt.inorder();
System.out.println("\nDo you want to continue (Type y or n) \n");
ch = scan.next().charAt(0);
} while (ch == 'Y'|| ch == 'y');
}
}